Каталог заданий.
Четырехугольники
Версия для печати и копирования в MS Word
1

В рав­но­бед­рен­ную тра­пе­цию, пло­щадь ко­то­рой равна  целая часть: 36, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 8 , впи­са­на окруж­ность. Сумма двух углов тра­пе­ции равна 60°. Най­ди­те пе­ри­метр тра­пе­ции.


Ответ:

2
Задание № 921
i

В рав­но­бед­рен­ную тра­пе­цию, пло­щадь ко­то­рой равна  целая часть: 55, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 8 , впи­са­на окруж­ность. Сумма двух углов тра­пе­ции равна 60°. Най­ди­те пе­ри­метр тра­пе­ции.


Ответ:

3
Задание № 951
i

В рав­но­бед­рен­ную тра­пе­цию, пло­щадь ко­то­рой равна  целая часть: 28, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 8 , впи­са­на окруж­ность. Сумма двух углов тра­пе­ции равна 60°. Най­ди­те пе­ри­метр тра­пе­ции.


Ответ:

4
Задание № 981
i

В рав­но­бед­рен­ную тра­пе­цию, пло­щадь ко­то­рой равна  целая часть: 66, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 8 , впи­са­на окруж­ность. Сумма двух углов тра­пе­ции равна 60°. Най­ди­те пе­ри­метр тра­пе­ции.


Ответ:

5
Задание № 1011
i

В рав­но­бед­рен­ную тра­пе­цию, пло­щадь ко­то­рой равна  целая часть: 10, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 8 , впи­са­на окруж­ность. Сумма двух углов тра­пе­ции равна 60°. Най­ди­те пе­ри­метр тра­пе­ции.


Ответ:

6
Задание № 71
i

Че­ты­рех­уголь­ник MNPK, в ко­то­ром ∠N  =  128°, впи­сан в окруж­ность. Най­ди­те гра­дус­ную меру угла K.



7
Задание № 431
i

Че­ты­рех­уголь­ник MNPK, в ко­то­ром ∠N=142°, впи­сан в окруж­ность. Най­ди­те гра­дус­ную меру угла K.



8
Задание № 461
i

Че­ты­рех­уголь­ник MNPK, в ко­то­ром ∠N=136°, впи­сан в окруж­ность. Най­ди­те гра­дус­ную меру угла K.



9
Задание № 491
i

Че­ты­рех­уголь­ник MNPK, в ко­то­ром ∠N=124°, впи­сан в окруж­ность. Най­ди­те гра­дус­ную меру угла K.



10
Задание № 521
i

Че­ты­рех­уголь­ник MNPK, в ко­то­ром ∠N=132°, впи­сан в окруж­ность. Най­ди­те гра­дус­ную меру угла K.



11

В рав­но­бед­рен­ную тра­пе­цию, пло­щадь ко­то­рой равна 115, впи­са­на окруж­ность ра­ди­у­са 5. Най­ди­те пе­ри­метр тра­пе­ции.


Ответ:

12
Задание № 1640
i

В рав­но­бед­рен­ную тра­пе­цию, пло­щадь ко­то­рой равна 48, впи­са­на окруж­ность ра­ди­у­са 3. Най­ди­те пе­ри­метр тра­пе­ции.


Ответ:

13
Задание № 103
i

Най­ди­те длину сред­ней линии пря­мо­уголь­ной тра­пе­ции с ост­рым углом 60°, у ко­то­рой боль­шая бо­ко­вая сто­ро­на и боль­шее ос­но­ва­ние равны 10.



14
Задание № 553
i

Най­ди­те длину сред­ней линии пря­мо­уголь­ной тра­пе­ции с ост­рым углом 60°, у ко­то­рой боль­шая бо­ко­вая сто­ро­на и боль­шее ос­но­ва­ние равны 2.



15
Задание № 583
i

Най­ди­те длину сред­ней линии пря­мо­уголь­ной тра­пе­ции с ост­рым углом 60°, у ко­то­рой боль­шая бо­ко­вая сто­ро­на и боль­шее ос­но­ва­ние равны 4.



16
Задание № 613
i

Най­ди­те длину сред­ней линии пря­мо­уголь­ной тра­пе­ции с ост­рым углом 60°, у ко­то­рой боль­шая бо­ко­вая сто­ро­на и боль­шее ос­но­ва­ние равны 6.



17
Задание № 643
i

Най­ди­те длину сред­ней линии пря­мо­уголь­ной тра­пе­ции с ост­рым углом 60°, у ко­то­рой боль­шая бо­ко­вая сто­ро­на и боль­шее ос­но­ва­ние равны 16.



18
Задание № 1135
i

Пло­щадь па­рал­ле­ло­грам­ма равна 4 ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та , его сто­ро­ны равны 6 и 4. Най­ди­те боль­шую диа­го­наль па­рал­ле­ло­грам­ма.



19
Задание № 1165
i

Пло­щадь па­рал­ле­ло­грам­ма равна 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та , его сто­ро­ны равны 6 и 1. Най­ди­те боль­шую диа­го­наль па­рал­ле­ло­грам­ма.



20
Задание № 1195
i

Пло­щадь па­рал­ле­ло­грам­ма равна 4 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та , его сто­ро­ны равны 6 и 2. Най­ди­те боль­шую диа­го­наль па­рал­ле­ло­грам­ма.



21
Задание № 1667
i

Длина одной сто­ро­ны пря­мо­уголь­но­го участ­ка на 25 м мень­ше дру­гой. Най­ди­те все зна­че­ния длины (в мет­рах) его боль­шей сто­ро­ны а, при ко­то­рых для пол­но­го ограж­де­ния участ­ка будет ис­поль­зо­ва­но не более 240 м де­ко­ра­тив­ной сетки.



22
Задание № 1699
i

Длина одной сто­ро­ны пря­мо­уголь­но­го участ­ка на 14 м мень­ше дру­гой. Най­ди­те все зна­че­ния длины (в мет­рах) его боль­шей сто­ро­ны а, при ко­то­рых для пол­но­го ограж­де­ния участ­ка будет ис­поль­зо­ва­но не более 230 м де­ко­ра­тив­ной сетки.



23
Задание № 1898
i

Дан па­рал­ле­ло­грамм ABCD, точка К лежит на пря­мой, со­дер­жа­щей сто­ро­ну ВС, так, что точка В лежит между точ­ка­ми К и С и  дробь: чис­ли­тель: KB, зна­ме­на­тель: BC конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби . От­ре­зок DK пе­ре­се­ка­ет сто­ро­ну АВ в точке Р, а диа­го­наль АС  — в точке Т. Най­ди­те длину от­рез­ка РТ, если DK  =  132.


Ответ:

24
Задание № 1930
i

Дан па­рал­ле­ло­грамм ABCD, точка К лежит на пря­мой, со­дер­жа­щей сто­ро­ну ВС, так, что точка В лежит между точ­ка­ми К и С и  дробь: чис­ли­тель: KB, зна­ме­на­тель: BC конец дроби = дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби . От­ре­зок DK пе­ре­се­ка­ет сто­ро­ну АВ в точке Р, а диа­го­наль АС  — в точке Т. Най­ди­те длину от­рез­ка РТ, если DK  =  80.


Ответ:

25
Задание № 2123
i

В рав­но­бед­рен­ной тра­пе­ции диа­го­наль пер­пен­ди­ку­ляр­на бо­ко­вой сто­ро­не. Най­ди­те зна­че­ние вы­ра­же­ния 4 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та умно­жить на S, где S  — пло­щадь тра­пе­ции, если боль­шее ос­но­ва­ние тра­пе­ции равно 6 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , а один из углов тра­пе­ции равен 60°.


Ответ:

26
Задание № 2153
i

В рав­но­бед­рен­ной тра­пе­ции диа­го­наль пер­пен­ди­ку­ляр­на бо­ко­вой сто­ро­не. Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та умно­жить на S, где S  — пло­щадь тра­пе­ции, если боль­шее ос­но­ва­ние тра­пе­ции равно 8 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , а один из углов тра­пе­ции равен 60°.


Ответ:

27
Задание № 2185
i

Длины сто­рон па­рал­ле­ло­грам­ма от­но­сят­ся как 4 : 5, а вы­со­та, про­ве­ден­ная к боль­шей сто­ро­не, равна 6. Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та умно­жить на S, где S  — пло­щадь па­рал­ле­ло­грам­ма, если один из углов па­рал­ле­ло­грам­ма равен 120°.


Ответ:

28
Задание № 2215
i

Длины сто­рон па­рал­ле­ло­грам­ма от­но­сят­ся как 2 : 3, а вы­со­та, про­ве­ден­ная к боль­шей сто­ро­не, равна 6. Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та умно­жить на S, где S  — пло­щадь па­рал­ле­ло­грам­ма, если один из углов па­рал­ле­ло­грам­ма равен 120°.


Ответ:

29
Задание № 55
i

Четырёхуголь­ник ABCD впи­сан в окруж­ность. Если \angle BAC=40 гра­ду­сов, \angle ABD = 75 гра­ду­сов, то гра­дус­ная мера между пря­мы­ми AB и CD равна ...


Ответ:

30
Задание № 295
i

Четырёхуголь­ник ABCD впи­сан в окруж­ность. Если \angle BAC=15 гра­ду­сов, \angle ABD = 80 гра­ду­сов, то гра­дус­ная мера между пря­мы­ми AB и CD равна ...


Ответ:

31
Задание № 355
i

Четырёхуголь­ник ABCD впи­сан в окруж­ность. Если \angle BAC=35 гра­ду­сов, \angle ABD = 85 гра­ду­сов, то гра­дус­ная мера между пря­мы­ми AB и CD равна ...


Ответ:

32
Задание № 385
i

Четырёхуголь­ник ABCD впи­сан в окруж­ность. Если \angle BAC=35 гра­ду­сов, \angle ABD = 80 гра­ду­сов, то гра­дус­ная мера между пря­мы­ми AB и CD равна ...


Ответ:

33
Задание № 415
i

Четырёхуголь­ник ABCD впи­сан в окруж­ность. Если \angle BAC=75 гра­ду­сов, \angle ABD = 50 гра­ду­сов, то гра­дус­ная мера между пря­мы­ми AB и CD равна ...


Ответ:

34
Задание № 58
i

В рав­но­бо­кой тра­пе­ции боль­шее ос­но­ва­ние вдвое боль­ше каж­дой из осталь­ных сто­рон и лежит в плос­ко­сти α. Бо­ко­вая сто­ро­на об­ра­зу­ет с плос­ко­стью α угол, синус ко­то­ро­го равен  дробь: чис­ли­тель: 5 ко­рень из 3 , зна­ме­на­тель: 18 конец дроби . Най­ди­те 36sinβ, где β — угол между диа­го­на­лью тра­пе­ции и плос­ко­стью α.


Ответ:

35
Задание № 298
i

В рав­но­бо­кой тра­пе­ции боль­шее ос­но­ва­ние вдвое боль­ше каж­дой из осталь­ных сто­рон и лежит в плос­ко­сти α. Бо­ко­вая сто­ро­на об­ра­зу­ет с плос­ко­стью α угол, синус ко­то­ро­го равен  дробь: чис­ли­тель: 5 ко­рень из 3 , зна­ме­на­тель: 21 конец дроби . Най­ди­те 21sinβ, где β — угол между диа­го­на­лью тра­пе­ции и плос­ко­стью α.


Ответ:

36
Задание № 358
i

В рав­но­бо­кой тра­пе­ции боль­шее ос­но­ва­ние вдвое боль­ше каж­дой из осталь­ных сто­рон и лежит в плос­ко­сти α. Бо­ко­вая сто­ро­на об­ра­зу­ет с плос­ко­стью α угол, синус ко­то­ро­го равен  дробь: чис­ли­тель: 4 ко­рень из 3 , зна­ме­на­тель: 15 конец дроби . Най­ди­те 45sinβ, где β — угол между диа­го­на­лью тра­пе­ции и плос­ко­стью α.


Ответ:

37
Задание № 388
i

В рав­но­бо­кой тра­пе­ции боль­шее ос­но­ва­ние вдвое боль­ше каж­дой из осталь­ных сто­рон и лежит в плос­ко­сти α. Бо­ко­вая сто­ро­на об­ра­зу­ет с плос­ко­стью α угол, синус ко­то­ро­го равен  дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 6 конец дроби . Най­ди­те 18sinβ, где β — угол между диа­го­на­лью тра­пе­ции и плос­ко­стью α.


Ответ:

38
Задание № 418
i

В рав­но­бо­кой тра­пе­ции боль­шее ос­но­ва­ние вдвое боль­ше каж­дой из осталь­ных сто­рон и лежит в плос­ко­сти α. Бо­ко­вая сто­ро­на об­ра­зу­ет с плос­ко­стью α угол, синус ко­то­ро­го равен  дробь: чис­ли­тель: 7 ко­рень из 3 , зна­ме­на­тель: 18 конец дроби . Най­ди­те 36sinβ, где β — угол между диа­го­на­лью тра­пе­ции и плос­ко­стью α.


Ответ:
Завершить работу, свериться с ответами, увидеть решения.